报告题目:An Erd\H{o}s-Ko-Rado Theorem in $\ell_2$-Norm
报告人: 张华军 绍兴文理注册送彩金
时间:2025年10月13日(星期一)下午 15:00-17:00
腾讯会议ID: 291-153-851
报告摘要:The codegree squared sum ${\rm co}_2(\mathcal F)$ of a hypergraph (family) $\mathcal F \subseteq \binom{[n]} k$ is defined to be the sum of codegrees squared $d(E)^2$ over all $E\in \binom{[n]}{k-1}$, where $$d(E)=|\{F\in \mathcal F: E\subseteq F\}|.$$
Given a family of $k$-uniform hypergraphs $\mathcal H$, Balogh, Clemen and Lidick\'y recently introduced the problem to determine the maximum codegree squared sum ${\rm co}_2(\mathcal F)$ over all $\mathcal H$-free $\mathcal F$.
In this talk, we will show that: Let $t,k,n$ be positive integers such that $n\geq(t+1)(k-t+1)$. If $\mathcal F$ is a $t$-intersecting family of $\binom{[n]}{k}$, then\[{\rm co}_2(\mathcal F)\le{\binom{n-t}{k-t}}(1+(n-k+1)(k-t)).\]
Moreover, for $n> (t+1)(k-t+1)$, equality holds if and only if $\mathcal{F}=\{F\in {\binom{[n]}{k}}: T\subset F\}$ for some $t$-subset $T$ of $[n]$. This confirms a conjecture of Brooks and Linz. This is a joint work with Biao Wu.
个人简介:张华军,男,博士、教授,浙江省高校中青年学科带头人,中国组合数学与图论专业委员会委员。2007年1月毕业于大连理工大学获博士学位,同年到浙江师范大学工作,2021年1月调入绍兴文理注册送彩金
。曾应邀赴美国、匈牙利、斯洛伐克、韩国和台湾等国家或地区进行学术交流、访问。主要从事组合极值理论研究,多篇论文发表在组合数学与图论领域的国际顶级期刊J. Combin.Theory Ser. A、J. Combin.Theory Ser. B、J.Graph Theory和SIAM J. Discrete Math.,主持或完成国家自然科学基金多项。